

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019)

(Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

B. E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

В	BE (Electronics & Telecommunication Engineering)					B. E. (SEM: VII)			
Course Name: Mobile Communication Sys			cation Syst	tems		Course Code	: PCC-ETC701		
Teaching Scheme (Program Specific)					Exami	nation Scheme (Format	ive/ Summative))	
Modes of Teaching / Learning / Weightage					Modes	of Continuous Assessm	ent / Evaluation	1	
Hours Per Week				The (10	ory 10)	Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	25	25	150
3	-	2	5	4	25	75			
		L	A: In Semes	ter Assessr	nent- Paj	per Dura	ation – 1.5 Hours		
		Ε	SE: End Se	mester Eva	luation-	Paper D	uration - 3 Hours		
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance/Learning Attitude (20%)									
	Prerequisite: Analog Communication, Digital Communication, Probability theory and Random								
	varia	bles							

Course Objective:

To understand the cellular design concepts and different types of radio propagation models used in wireless link design and study the system architecture of 2G, 3G and 4G wireless network.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

SN	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	plain various multiple access techniques. Illustrate the cellular fundamentals and estimate the coverage and capacity of cellular systems.	L1, L2, L3, L4, L5
2	strate the fundamentals, system architecture, protocols, radio interface and security of GSM.	L1, L2, L3
3	plain the GSM evolution, IS-95 system architecture and Radio Interface, CDMA fundamentals and radio interface.	L1, L2, L3, L4
4	ply the concepts of 3G technologies of UMTS and CDMA 2000, and elaborate the principles of 3GPP LTE.	L1, L2, L3
5	ssify different types of propagation models and analyze the link budget.	L1, L2, L3, L4, L5, L6
6	ntify the emerging technologies for upcoming wireless communication generations like Cognitive radio, Relaying and Cooperative communication	L1, L2, L3, L4

Detailed Syllabus:

Modu No	e Topics	Hrs	Cognitive levels of attainment as per Bloom's Taxonomy
	Fundamentals of Mobile Communication	10	11121214
1	Introduction to wireless communication: basic terms used in wireless	10	L1, L2, L3, L4,
	communication, call establishment procedure.		LJ

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

· · · · · · · · · · · · · · · · · · ·			
	Features of all conventional multiple access techniques: Frequency division multiple accesses (FDMA), time division multiple access (TDMA), space spectrum multiple access (SSMA), space division multiple access (SDMA), OFDM-PAPR, and OFDMA. The Cellular Concept System Design Fundamentals: Frequency Reuse, Channel assignment strategies, Interference and System Capacity, Trunking and Grade of Service, and Improving the Coverage and Capacity in Cellular Systems.		
2	2G Technologies GSM: GSM Network architecture, GSM signaling protocol architecture, identifiers used in GSM system, GSM channels, frame structure for GSM, GSM speech coding, authentication and security in GSM, GSM call procedures, GSM hand-off procedures, GSM services and features. Link budget for GSM and its numericals.	08	L1, L2, L3
3	GSM evolution and IS-95 GSM evolution: GPRS and EDGE- architecture, radio specifications, channels. IS-95: Architecture of CDMA system, CDMA air interface, power control in CDMA system, power control, handoff, rake receiver, link budget for CDMA and its numericals.	08	L1, L2, L3
4	3G Technology UMTS: Objectives, standardisation and releases, network architecture, air interface specifications, channels, security procedure, W-CDMA air interface, attributes of W-CDMA system, and W-CDMA channels. CDMA 2000 cellular technologies: Forward and Reverse Channels, Handoff and Power Control.	06	L1, L2, L3
5	3GPP LTE Introduction, system overview: Frequency bands and spectrum flexibility, network structure, and protocol structure. Physical layer: Frames, slots, and symbols, modulation, coding, multiple-antenna techniques, and Logical and Physical Channels. Physical layer procedures: Establishing a connection, retransmissions and reliability, scheduling, power control, handover.	07	L1, L2, L3
6	Mobile Radio Propagation Large scale fading: Free space propagation model, the three basic propagation mechanisms, reflection, ground reflection (two-ray) model, diffraction, scattering, and practical Link budget design using path loss models. Small scale fading: Small scale multipath propagation, parameters of mobile multipath channels, Doppler shift, types of small-scale fading, power delay profile, average and RMS delay spread, coherence bandwidth and coherence time, flat and frequency selective fading, slow and fast fading, Rayleigh and Ricean distributed fading channel.	06	L1, L2, L3, L4, L5, L6
	Total Hours	45	

Books and References:

Sr. No.	Title	Authors	Publisher	Edition	Year
1	Wireless Communications: Principles and Practice	Theodore S. Rappaport	Pearson Education	Second	2010
2	Wireless Communications	Andrea Goldsmith	Cambridge University Press	First	2009
3	Fundamentals of Wireless Communication	David Tse and Pramod Vishwanath	Cambridge University Press	First	2005
4	Wireless Communications	Andreas F. Molisch	Wiley-IEEE Press	Second	2012
5	Modern Wireless Communications	Michael Moher and Simon S. Haykin	Pearson Education India	First	2011

Online References:

Sr. No.	Website Name	URL	Modules Covered
1	NPTEL	https://nptel.ac.in/courses/108/106/106106167/	M1, M2, M3, M4
2	NPTEL	http://nptel.ac.in/courses/117104099/	M1, M2, M3, M4, M5, M6
3	NPTEL	https://nptel.ac.in/courses/117/104/117104117/#	Prerequisites and M6

List of Practical/ Experiments:

Practical Number	Type of Experiment	Practical/ Experiment Topic	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
1	Dacia	To study the effect of cluster size and no. of Co-channel interfering cells on signal to Interference ratio.	2	L1, L2, L3
3	Experiments	simulate the probability density functions of Rayleigh and Rician distribution. dy the relation between cluster size N and capacity C.	2	L1, L2, L3
5		observe the effect of velocity and direction of arrival of a vehicle on Doppler frequency.	2	L1, L2, L3, L4, L5
6	Design	generate PN sequence for the given polynomial	2	L1, L2, L3
7	Experiments	sign of communication system using Matlab Simulink to study the effect of Rayleigh fading.	2	L1, L2, L3, L4, L5, L6
8		sign of communication system using Matlab Simulink to study the effect of Rician fading.	2	L1, L2, L3, L4, L5, L6
9		plot the channel capacity versus SNR for different MIMO systems	2	
10	Advanced Experiments	tlab Simulation of energy detection-based spectrum sensing in cognitive radio.	2	L1, L2, L3, L4, L5
		se Study: 5G	2	
		Total Hours	20	

B. E. Semester -- VII Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under **Autonomy Scheme**

TCET

[Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019] Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

Estd. in 2001

B. F	B. E. (Electronics and Telecommunication Engineering)				B.E. (SEM: VII)				
Course Name: Professional Elective III (Digital Image Processing)				Course Cod	e: PEC-ETC7011	l			
Teaching Scheme (Program Specific) Examination				ion Scheme (Forma	tive/ Summative	e)			
Mod	les of Teach	ing / Learni	ng / Weight	age	Μ	odes of	Continuous Assess	nent / Evaluatio	n
Hours Per Week			The	ory	Practical/Oral /Presenta tion	Term Work	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	PR	TW	
3	-	2@	5	4	25	75	25	25	150
	IA: In-Semester Assessment - Paper Duration – 1.5 Hours								
ESE: End Semester Examination - Paper Duration - 3 Hours									
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance / Learning Attitude (20%)									
Prerequi	site: Discret	e Time Signa	l Processing	g					

@-Professional Elective Courses Lab will be conducted in the form Capstone Project

Course Objective: To cover the fundamentals and mathematical models in digital image processing and to develop time and frequency domain techniques for image enhancement & segmentation of Digital images.

<u>Course Outcomes</u>: Upon completion of the course students will be:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	Interpret the formation of digital images in a computer and also various image color models.	L1, L2
2	Execute the transformation and the inverse transformation from spatial to Frequency domain for a given image.	L1, L2, L3
3	Execute image enhancement in spatial and frequency domain	L1, L2, L3
4	Choose and apply appropriate morphological tools on images and articulate image restoration models and techniques	L1, L2, L3
5	Summarize, Categorize and apply Image Compression techniques on digital images	L1, L2, L3, L4
6	Articulate and apply image segmentation techniques based on Discontinuities and Similarities	L1, L2, L3

Detailed Syllabus:

Module No	Topics	Hrs	Cognitive levels of attainment as per Bloom's Taxonomy
	Digital Image Fundamentals		
1	Introduction – Origin – Steps in Digital Image Processing, Components, Elements of Visual Perception – Image Sensing and Acquisition, Image Sampling and Quantization – Relationships between pixels, Transformation: Orthogonal, Euclidean, Affine.	06	L1, L2
	Color Image Processing: Color Fundamentals Color models.		
	Image Transforms		
2	1-D DFT, 2-D Discrete Fourier Transform and Its Inverse, Some Properties of 2D DFT, Walsh -Hadamard, Discrete Cosine Transform, Haar Transform	07	L1, L2, L3
	Image Enhancement		
	Image Negative, Log Transform, Power Law transform, Histogram equalization and Histogram Specification		
	Spatial Domain: Basics of Spatial Filtering, The Mechanics of	10	
3	Spatial Filtering, Generating Spatial Filter Masks–Smoothing and Sharpening Spatial Filtering	10	L1, L2, L3
	Frequency Domain: The Basics of Filtering in the Frequency Domain, Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Laplacian, Unsharp Masking and Homomorphic filters		
	Mornhology & Image Restoration		
4	Morphology : Erosion and Dilation, Opening and Closing, The Hit- or-Miss Transformation.	06	L1, L2, L3
	Restoration : Noise models – Mean Filters – Order Statistics – Adaptive filters – Band		
	Image Compression		
5	Need for Data Compression Run-Length Coding Entropy Based Coding (Huffman &	1	
5	Arithmetic Coding), Transform Coding (JPEG, JPEG-LS, JPEG 2000), Predictive	08	L1, L2, L3, L4
	Coding (DPCM)		
	Image Segmentation		
	Point edge models, basic and advance edge detection, Edge linking and boundary	08	L1, L2, L3
6	detection, Canny's edge detection algorithm, Line, and Edge Detection: Detection of		
	Isolated Points, Line detection		
	Thresholding: Foundation, Role of illumination, Basic Global thresholding		
	Region Based segmentation: Region Growing, Region Splitting and merging	15	
1	l otal Hours	43	1

Books and References:

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

Sr. No.	Title	Authors	Publisher	Edition	Year
1	Digital Image Processing	Gonzales and Woods	Pearson Education, India	Third Edition	2008
2	Fundamentals of Image Processing	Anil K. Jain	Prentice Hall of India	First Edition	1989
3	Digital Image Processing	W Pratt	Wiley Publication	Third Edition	2002
4	Digital Image Processing	S Jayaraman	McGraw Hill	Second Edition	2020

Online References:

Sr. No.	Website Name	URL	Modules Covered
1	NPTEL	https://nptel.ac.in/courses/117/105/117105079/	M1, M2, M3, M4, M6
2	Image Processing Place	http://www.imageprocessingplace.com/	M1-M6

Suggested List of Practical/ Experiments:

Practical Number	Type of Experiment	Practical/ Experiment Topic	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
1		Spatial and Tonal Resolution	2	L1, L2, L3
2	Basic Experiments	Image Enhancement in Spatial Domain	2	L1, L2, L3
3		DFT and IDFT of an Image	2	L1, L2, L3
4	D '	Image Filtering-Spatial domain	2	L1, L2, L3
5	Design Experiments	Image Filtering- Frequency Domain.	2	L1, L2, L3
6		Morphological operations on an Image	2	L1, L2, L3

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

7		Image Restoration.	2	L1, L2, L3
8		Image Segmentation	2	L1, L2, L3
9		Chain Code	2	L1, L2, L3
10	Mini/Minor Projects/ Seminar/ Case Studies	 Mini Project: Color Image Enhancement by Histogram Processing. Color Image Segmentation. Two-dimensional Discrete Wavelet Transforms. Region Growing. Skeletons 	2	L1, L2, L3, L4, L5, L6

B. E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

B. E. (Electronics and Telecommunication Engineering))	B.E. (SEM: VII)			
Course Name: Professional Elective III (Operating Systems))	Course Code: PEC-ETC7012			
Teaching Scheme (Program Specific) Examination Scheme (Formative/ Summation)						ive/ Summative)			
M	Modes of Teaching / Learning / Weightage Modes of Continuous Assessment / Evaluation					ation			
Hours Per Week Theory Practical/Oral Term Work (100) (25) (25)					Term Work (25)	Total			
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	PR	TW	150
3	-	2@	5	4	25	75	25	25	
@-Professional Elective Courses Lab will be conducted in the form Capstone Project IA: In-Semester Assessment - Paper Duration – 1.5 Hours ESE: End Semester Examination - Paper Duration – 3 Hours The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance / Learning Attitude (20%)									
Prereau	isite: Basic	Understand	ling of Com	outer Syster	n.				

<u>Course Objective:</u> To provide an introduction to the internal operation of modern operating systems. In particular, the course will cover processes and threads, mutual exclusion, CPU scheduling, deadlock, memory management, and file systems.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	Understand the role of an operating system, its function and issues.	L1, L2
2	Understand process management and memory management concepts including	L1, L2, L3
	scheduling, synchronization, deadlocks and various algorithms.	
3	Compare between different algorithms used for File management and disk	L1, L2, L3
	management.	
4	Be familiar with Unix and its management and scheduling.	L1, L2, L3
5	Be familiar with Linux OS.	L1, L2, L3
6	Learn various OS used by hackers.	L1. L2. L3. L4

Detailed Syllabus:

Module No.	Topics	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
1	Introduction to Operating System Definition, objectives, functions, evolution, services, types, and different views of OS, Operating System as a resource manager, system calls, and shell, Monolithic systems, layered systems, client server model, monolithic kernel and microkernel	6	L1, L2
2	Process Management and Memory Management Process, process creation, process control block, process states, process state transition diagram, Scheduling queues and schedulers, preemptive and non- preemptive scheduling algorithms, types of threads, multithreading models,	10	L1, L2, L3

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

	Race condition, critical section, mutual exclusion, semaphores, monitors, Multiprogramming with fixed and variable partitions, memory allocation strategies, Logical and physical address space, paging and segmentation, performance of demand paging, page replacement algorithms, Deadlock Problem, deadlock characterization, deadlock prevention and deadlock avoidance, deadlock detection and recovery		
3	File Management and Input Output Management File Naming, File Structure, File Types, File Access, File Attributes, File Operations, Memory Mapped Files, Implementing Files, contiguous allocation, linked list allocation, indexed allocations, I-node, Single level directory system, Two level directory system, Hierarchical Directory System, Principles of Input/output H/W: I/O Devices, Device Controllers, Direct Memory Access, Principles of Input/output S/W: Goals Of I/O S/W, Interrupt Handler, Device Driver, Device Independent I/O Software Disks: RAID levels, Disks Arm Scheduling Algorithms, Management of free blocks.	10	L1, L2, L3
4	Unix Operating System History of UNIX, UNIX Goals, Unix Shell, interfaces to Unix, UNIX utility programs, Traditional UNIX Kernel, Modern UNIX Systems, Unix process management: Concept, Scheduling in Unix, Unix Memory management: Paging, Page replacement strategies, Unix file management: I-node, File allocation, I/O management, Unix Security measures	6	L1, L2, L3
5	Linux Operating System History, Linux Processes and Thread management, Scheduling in Linux, Linux System calls, Memory management: Virtual memory, Buddy Algorithm, Page replacement policy, Linux File System, I/O management: Disk Scheduling, Advantages of Linux and Unix over Windows	9	L1, L2, L3
6	Case Study - Operating Systems for Hackers Kali Linux, Backtrack, Pentoo, Nodezero, Parrot-sec forensic os, Network Security Toolkit (NST), Arch Linux, GnackTrack, Bugtraq, DEFT Linux, Knoppix STD, BlackArch Linux, Samurai Web Testing Framework, Caine, Fedora Security Spin, Live Hacking OS, ArchStrike Linux, BackBox, BlackBuntu, Dracos Linux	4	L1, L2, L3, L4
	Total Hours		45

Books and References:

Sr. No.	Title	Authors	Publisher	Edition	Year
1	Operating System-Internal & Design Principles	William Stallings	Pearson	6 th Edition	2005
2	Operating Systems Concepts	Silberschatz A., Galvin P., and Gagne G	Wiley	9 th Edition	2012
3	Modern Operating Systems	Tanenbaum	PHI	3 rd Edition	2009
4	The Design of Unix Operating System	Maurice J. Bach	Prentice Hall	1 st Edition	1986
5	Operating Systems	Achyut S. Godbole Tata McGraw Hil		2 nd edition	2008
6	Linux Command Line & Shell Scripting	Richard Blum and Christine Bresnahan	Wiley	2 nd edition	2011

Online Reference:

Sr. No.	Website Name	URL	Modules Covered
1	Udacity	https://www.udacity.com/course/introduction-to-operating-systemsud923	M2, M3
2	NPTEL	https://nptel.ac.in/courses/106/108/106108101/	M1, M2, M3
3	Tutorial Point	https://www.tutorialspoint.com/operating_system/os_overview.htm	M1, M2, M3
4	Coursera	https://www.coursera.org/learn/cybersecurity-roles-processes-operating- system-security#syllabus	M1-M3, M5

B. E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

Course Name: Professional Elective III (Microwave Engineering) Course Code: PEC-ETC7013 Teaching Scheme (Program Specific) Examination Scheme (Formative/ Summative) Modes of Teaching / Learning / Weightage Modes of Continuous Assessment / Evaluation Theory Tutorial Practical Contact Hours Contact Hours Credits IA ESE PR Tutorial Practical Contact Hours Credits IA ESE PR TW 3 - 2@ 5 4 25 75 25 25 25 150 3 - 2@ 5 4 25 75 25 25 25 150 3 - 2@ 5 4 25 75 25 25 25 150 3 - 2@ 5 4 25 75 25 25 25 150 4 2.5 75 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	B. E. (Electronics and Telecommunication Engineering)					B.E. (SEM: VII)				
Teaching Scheme (Program Specific) Examination Scheme (Formative/ Summative) Modes of Teaching / Learning / Weightage Modes of Continuous Assessment / Evaluation Hours Per Week Theory 1000 Practical/Oral (25) Total Theory Tutorial Practical Contact Hours Contact Hours Credits IA ESE PR TW 3 - 2@ 5 4 25 75 25 <td colspan="5">Course Name: Professional Elective III (Microwave Engineering)</td> <td colspan="4">Course Code: PEC-ETC7013</td>	Course Name: Professional Elective III (Microwave Engineering)					Course Code: PEC-ETC7013				
Modes of Teaching / Learning / Weight age of Teaching / Learning / Weight age of marks for continuous Assessment / Evaluation Modes of Continuous Assessment / Evaluation Hours Per Weight age of Modes of Continuous Assessment / Evaluation Theory Tutorial Practical Contact Hours Credits IA Practical/Oral (25) Term Work (25) Theory Tutorial Practical Contact Hours Credits IA ESE PR TW Total 3 - 2@ 5 4 25 75 25 25 150 IA: In-Semester Assessment - Paper Duration - 1.5 Hour ESE: End Semester Examination - Paper Duration - 3 Hours The weight age of marks for continuous evaluation of Term work/Report: Formative (40%), Timely	Teaching Scheme (Program Specific) Examination Scheme (Formative/ Summative)									
Hours Per Week Theory Interve term Work (25) Term Work (25) Total Theory Tutorial Practical Contact Hours Credits IA ESE PR TW Total 150 3 - 2@ 5 4 25 75 25 25 150 IA: In-Semester Assessment - Paper Duration – 1.5 Hour ESE: End Semester Examination - Paper Duration – 3 Hours The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely	Mo	Modes of Teaching / Learning / Weightage Modes of Continuous Assessment / Evaluation						ation		
Theory Tutorial Practical Contact Hours Credits IA ESE PR TW 150 3 - 2@ 5 4 25 75 25 25 @-Professional Elective Courses Lab will be conducted in the form Capstone Project IA: In-Semester Assessment - Paper Duration – 1.5 Hour ESE: End Semester Examination - Paper Duration - 3 Hours The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely	Hours Per Week Theory (100)					ory 0)	Practical/Oral (25)	Term Work (25)	Total	
3 - 2@ 5 4 25 75 25 25 @-Professional Elective Courses Lab will be conducted in the form Capstone Project IA: In-Semester Assessment - Paper Duration – 1.5 Hour ESE: End Semester Examination - Paper Duration - 3 Hours The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely	Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	PR	TW	150
@-Professional Elective Courses Lab will be conducted in the form Capstone Project IA: In-Semester Assessment - Paper Duration – 1.5 Hour ESE: End Semester Examination - Paper Duration - 3 Hours The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely	3	-	2@	5	4	25	75	25	25	
completion of practical (40%) and Attendance/Learning Attitude (20%)										

<u>Course Objective:</u> The course intends to give an understanding of Active and Passive devices. The course also aims to make the students understand and apply design technique to impedance matching network using lumped components and transmission lines. Lastly, the course will also deliver the fundamental understanding of Microwave Measurements parameters.

SN	Course Outcomes	
		Cognitive levels of attainment as per Bloom's Taxonomy
1	Characterize S parameter and transmission line	L1, L2, L3, L4
2	Design and analyze impedance matching network using lumped and distributed parameters.	L1, L2, L3, L4, L5, L6
3	Characterize microwave passive devices	L1, L2
4	Characterize microwave tubes	L1, L2
5.	Characterize microwave semiconductor devices at higher frequencies.	L1, L2
6.	Demonstrate skills of microwave measurements	L1, L2, L3

<u>Course Outcomes</u>: Upon completion of the course students will be able to:

Detailed Syllabus:

Module No.	Topics	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
---------------	--------	------	--

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

	Introduction to Microwaves			
1	1.1 Microwave Frequency Bands in Radio Spectrum, Characteristics, Advantages and Applications of Microwaves.	06	11121314	
	1.2 Scattering parameters: Characteristics and Properties.		L_1, L_2, L_3, L_4	
	1.3 Strip lines, Microstrip lines and coupled lines: Analysis and design.			
	Impedance Matching & Waveguides			
	2.1 Design of Impedance matching network using lumped parameters.			
2	2.2 Design of Impedance matching network using distributed parameters: Single stub design.	09	L1, L2, L3, L4, L5, L6	
	2.3 Rectangular and circular waveguides: Construction, Working and Mode analysis.			
	Passive Devices			
3	3.1 Resonators, Re-entrant cavities, Tees, Hybrid ring, Directional couplers, Phase shifters, Terminations, Attenuators and Ferrite devices such as Isolators, Gyrators, and Circulators.	05	L1, L2	
	Microwave Tubes			
1	4.1 Two Cavity Klystron, Multi-Cavity Klystron and Reflex Klystron.	10		
-	4.2 Helix Travelling Wave Tube and Cross Field Amplifier.			
	4.3 Cylindrical Magnetron and Gyrotron.		L1, L2	
	Microwave Semiconductor Devices& Microwave Integrated Circuits (MIC)			
	5.1 Diodes: Varactor, PIN, Tunnel, Point Contact, Schottky Barrier, Gunn, IMPATT and TRAPATT			
5	5.2 Transistors: BJT, Hetro junction BJT, MESFET, and HEMT	10	L1, L2	
	5.3 MIC Materials.			
	5.4 Types of MIC: Hybrid and Monolithic MIC.			
	Microwave Measurements			
6	6.1 VSWR, Frequency, Power, Noise, Q-Factor, Impedance, Attenuation, Dielectric Constant, Antenna Gain.		L1, L2, L3	
	Total	45		

Books & References:

Sr. No.	Title	Authors	Publisher	Edition	Year
1	Microwave Devices and Circuits	Samuel Liao	Prentice Hall	Third Edition	1998
2	Microwave Engineering	David Pozar	McGraw Hill Education	Fourth Edition	2014

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

3	Radio Frequency and Microwave Electronics	Matthew M. Radmanesh	Pearson Education.	Third Edition	2000
4	Microwave Engineering	Annapurna Das and S. K Das	McGraw Hill Education	Second Edition	2017
5	Foundations of Microwave Engineering	R. Collin	Wiley Interscience	Second Edition	2003
6	Radio Frequency and Microwave Communication Circuits- Analysis and Design	Devendra Misra	John Wiley & Sons	Second Edition	2001

Online References:

Sr. No.	Website Name	URL	Modules Covered
1	Swayam	https://swayam.gov.in/nd1_noc19_ee68/preview	M1-M6

B.E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

BE (Electronics & Telecommunication Engineering)				B. E. (SEM: VII)					
Course Name: Professional Elective III (Biomedical Electronics)				Course Code	PEC-ETC7014	ţ			
Т	eaching Scl	neme (Prog	am Specifi	ic)]	Examin	ation Scheme (Forma	tive/ Summativ	'e)
Mod	es of Teach	ing / Learn	ing / Weigl	htage]	Modes	of Continuous Assessn	nent / Evaluati	on
Hours Per Week				The (1	eory DO)	Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	25	25	150
3	-	2@	5	4	25	75			
	@-P1	rofessional E	Elective Cou	urses Lab v	vill be c	onducte	ed in the form Capstone	Project	
		IA: l	n Semeste	r Assessme	ent- Paj	per Dur	ation – 1.5 Hours		
ESE: End Semester Evaluation- Paper Duration - 3 Hours									
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance/Learning Attitude (20%)									
Prerequi	site: Electro	onic Devices	and Circui	its, Analog	and Di	gital con	nmunication		

Course Objective: The course intends to deliver a background of natural behaviour of the human body as a source of numerous signals, highly significant for diagnosis and therapy. The aim of the course is also to give students an idea of Electrodes, transducers as basic building block in the development of biomedical instrumentation along with current practices in the field of biomedical electronics.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

SN	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	Understand basic bioelectric signals of human body coming from muscle cell	L1, L2
2	Understand various transducers and electrodes for pressure, temperature and bioelectric signals	L1, L2, L3
3	Understand the principle and working of various cardiovascular parameters and their measurement techniques with applications.	L1, L2, L3
4	Distinguish between the various medical imaging techniques based on the principles and concepts involved in them.	L1, L2, L3
5	Understand application of analog and digital communication in the field of biotelemetry for remote patient monitoring	L1, L2, L3
6	Describe the significance of electrical safety in biomedical measurement.	L1, L2, L3

Detailed Syllabus:

Module No	Topics	Hrs	Cognitive levels of attainment as per Bloom's Taxonomy
1	Introduction to Electrophysiology And Cell Structure: Bioelectric signals: EEG, ECG, EMG, EOG, Muscle cell and nerve cell actions, resting potentials	08	L1, L2
	Physiological Transducers, Recording Electrodes and Bio Signal Amplifier:		
2	Classification of transducers, performance characteristics of transducers, pressure and temperature transducers, electrodes for ECG, EEG, EMG, electrode jelly and creams, Basic requirements of op-Amp circuits and instrumentation amplifiers in biomedical applications,	08	L1, L2, L3
	Central Nervous and Cardio-Vascular System:		
3	Receptors, Motor systems, Neural and neuromuscular measurements, Evoked response of EEG, Structure of Heart, Rhythmicity, Pacemaker cells, ECG theory, Electrocardiograph, Measurement of blood pressure and blood flow, Life saving devices: Pacemaker, Defibrillators	08	L1, L2, L3
	Imaging Techniques:		
4	X-Ray machine and its application. CT Scan- CT Number, Block Diagram, scanning system and application. Ultrasound Imaging- Modes of scanning and their application. MRI- Concepts and image generation, block diagram and its application	08	L1, L2, L3
	Biomedical Telemetry and Telemedicine:		
5	Wireless Telemetry, single channel telemetry system, multi-channel wireless telemetry system, Multi-patient telemetry, Implantable telemetry system, Transmission of analog physiological signals over telephone, Telemedicine	08	L1, L2, L3
	Electrical Safety of Medical Equipment:		
6	Regulation of medical devices, Physiological Effects of Electrical Current, Shock Hazards from Electrical Equipment, Methods of Accident Prevention	05	L1, L2, L3
	Total Hours	45	

Books and References:

Sr. No.	Title	Authors	Publisher	Edition	Year
1	Biomedical Instrumentation and Measurement	Leslie Cromwell, Fred Weibell and Erich A Pfeiffer	PHI	2 nd	1980
2	Handbook of Biomedical Instrumentation	R. S. Khandpur	Tata McGraw Hill	2^{nd}	2004
3	Principles of Applied Biomedical Instrumentation	L. E. Baker L. A. Geddes	John Wiley and Sons	3 rd	1991
4	Introduction to Biomedical Equipment Design	Carr and Brown	John Wiley	4 th	2001

Online References:

Sr. No.	Website Name	URL	Modules Covered
1	Engineering Notes Handwritten PYQ LectureNotes	Notes Biomedical Instrumentation BI by Verified Writer	M1, M2, M3,M4,M5

B. E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

B. E. (Electronics and Telecommunication Engineering)					B.E. (SEM: VII)				
Course Name: Professional Elective III (Error Correcting Codes)					Course Code: PEC-ETC7015				
Т	eaching Scl	heme (Progr	am Specifi	c)	E	xamina	tion Scheme (Form	ative/ Summati	ve)
Mod	les of Teach	ing / Learn	ing / Weigh	ntage	N	lodes of	Continuous Assess	sment / Evaluati	ion
Hours Per Week			Theory		Practical/Oral /Present ation	Term Work	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	PR	TW	
3	-	2@	5	4	25	75	25	25	150
(e	<i>y</i> -Profession	al Elective (Courses Lab	will be co	nducted	in the fo	orm of Capstone Proj	ject	
		IA: In-Se	emester Ass	sessment -	Paper D	Ouration	n – 1.5 Hours		
	ESE: End Semester Examination Paper Duration - 3Hours								
The weig	The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion								
		of pra	ctical (40%) and Atter	idance /	Learning	g Attitude (20%)		
Prerequi	site: Digital	communica	tion, Linear	algebra, pi	robabilit	y theory	, some exposure to t	ransform theory	

Course Objective: The course intends to deliver the fundamental knowledge of mathematical tools from groups and finite fields to develop codes and sequences to develop an ability to encode and decode different error correcting codes in digital communication.

<u>Course Outcomes:</u> Upon completion of the course, students will be able to:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	Apply the knowledge of mathematical tools from groups and finite fields to design various error control codes.	L1, L2, L3
2	Encode, detect, and correct the errors using the linear block coding technique.	L1, L2, L3, L4
3	Compute the cyclic and Golay codes for correcting double errors.	L1, L2, L3, L4
4	Demonstrate the competence in encoding and decoding BCH and Reed Solomon Codes	L1, L2, L3, L4
5	Illustrate the use of tree and trellis diagrams and the Viterbi algorithm to encode and decode convolutional codes.	L1, L2, L3, L4
6	Explain different error control codes based on spectral techniques.	L1, L2, L3, L4

Detailed Syllabus:

Module No	Topics	Hrs	Cognitive levels of attainment as per Bloom's Taxonomy
	Introduction to Algebra		
1	Importance of error correction methods in data communication. Groups, Fields and Vector Spaces, Elementary Properties of Galois fields, order of a Galois Field Element, The Euler Function, Primitive Elements in a Galois Field Primitive Polynomials and Galois Fields of Order pm, Irreducible Polynomials, Primitive Polynomials, Subfields of Galois Fields, minimal Polynomials and Conjugate Elements, Minimal Polynomials, Conjugates of Field Elements	07	L1, L2, L3
	Linear Block Codes		
2	Linear block codes, Codeword and Error Pattern Weight, Structure matrix description, Standard Array Decoding, Syndrome decoding, Hamming Codes, Perfect Codes, Reed – Muller Codes,	08	L1, L2, L3, L4
	Cyclic Codes		
3	Polynomial description, matrix description, Hamming Codes as Cyclic Codes for correcting double error, Cyclic Codes for correcting burst errors, the binary Golay code, Shortened cyclic Codes.	08	L1, L2, L3, L4
	BCH and Reed Solomon Codes		
4	Linear Algebra, Galois Field, Definition and Construction of Binary BCH Codes, Error Syndromes In Finite Fields, Decoding SEC and DEC, Reed- Solomon Codes.	08	L1, L2, L3, L4
	Convolutional Codes		
5	Convolutional encoders, Tree and Trellis diagram, Convolutional Codes Correcting burst errors, The Viterbi Decoding algorithm, Sequential decoding algorithm, The Fano algorithm, The stack algorithm. Applications of error control coding.	08	L1, L2, L3, L4
	Codes based on Spectral Techniques	0.6	
6	Spectral description of cyclic Codes, Extended Reed – Solomon Codes, Extended BCH codes, Goppa Codes.	06	L1, L2, L3, L4, L5
	Total Hours	45	

Books and References:

Sr	Title	Title Authors		Edition	Year
No					
<u>1</u>	Error Control Coding- Fundamentals and Applications	Shu Lin, Daniel J. Costello, Jr	Prentice-Hall	<u>2nd</u>	<u>2004</u>
2	Error Correcting Coding Theory	Man Young Rhee	McGraw – Hill Publishing	<u>1st</u>	<u>1989</u>
3	Introduction to Error Control Codes	Salvatore Gravano	Oxford	<u>3rd</u>	<u>2001</u>
<u>4</u>	An Introduction to Error Correcting Codes with Applications	S. A. Vanstone and P. C. van Oorschot	Kluwer Academic Press	<u>1st</u>	<u>1989</u>

<u>5</u>	Error-Control Systems for Digital Communication and Storage,	S. Wicker	Prentice-Hall	<u>1st</u>	<u>1995</u>
----------	---	-----------	---------------	-----------------------	-------------

B.E. Semester – VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS-H2019) Proposed Syllabus under Autonomy Scheme

BE (Electronics & Telecommunication Engineering)							Sem: VII				
Course Name: Big Data Analytics							Course Code: PEC-ETC7016				
Teaching Scheme (Program Specific)				Examination Scheme Formative/Summative)						/e)	
Modes of Teaching / Learning / Weightage				Modes of Continuous Assessment / Evaluation						ion	
	Ho	urs Per Wee	.k		The	ory	Practical/Oral		Term Work		Total
			(10)0)	(25)		(25)				
Theory	Tutorial	Practical	Contact Hours	Credit	MSE	SEE	MSE	SEE	MSE	SEE	
3	_	2	5	4	25	75		25		25	150
		MSE	: Mid Seme	ester Exam	- Paper I	Duration	– 1.5 Ho	urs	1	11	
			SEE: S	Semester E	nd Exam	1 – 3 Ho	urs				
The weig	The weightage of marks for evaluation of Term work/ Report: Formative (40%), Timely completion of practical (40%) and Attendance (20%)										
Prerequi	site: Data Ba	ise Managem	ent System								

<u>Course Objectives:</u> Course should be able to deliver the fundamental knowledge of the various aspects of Big Data Analytics and apply the knowledge in various platforms like Hadoop, NoSQL and Mapreduce spread over various level.

Course Outcomes:

SN	Course Outcomes	Cognitive levels of attainment as per Bloom's
		Taxonomy
1	Able to understand the key issues in big data management	L1, L2
2	Able to acquire fundamental enabling techniques using tools in big data analytics.	L1, L2, L3
3	Able to understand and apply BDA analysis in Hadoop	L1, L2, L3
4	Able to understand and apply BDA analysis in NoSQL	L1, L2, L3, L4
5	Able to understand and apply BDA analysis using Map reduce	L1, L2, L3, L4

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

6	Able to achieve adequate perspectives of big data analytics in various	L1, L2, L3, L4
	applications like sensor, recommender systems, social media applications etc	

Detailed Syllabus:

Module No.	Topics	Hrs.	Cognitive levels as per Bloom's Taxonomy
1	Introduction to Big Data Analytics	06	L1, L2
	1.1 Introduction to Big Data, Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach.		
	1.2 Technologies Available for Big Data, Infrastructure for Big Data, Big Data Challenges, Case Study of Big Data Solutions.		
2	Hadoop	06	L1, L2, L3
	2.1 Introduction to Hadoop. Core Hadoop Components, Hadoop Ecosystem, Physical Architecture, Hadoop limitations, Hadoop Features, Latency & Throughput, Hadoop file creation, Replication Factor, Rack awareness, Fault tolerance, High availability, Hadoop & DBMS comparison		
3	NoSQL	08	L1, L2, L3
	3.1 Introduction to NoSQ, NoSQL business drivers, NoSQL case studies		
	3.2 NoSQL data architecture patterns: Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns		
	3.3 Using NoSQL to manage big data: What is a big data NoSQL solution? Understanding the types of big data problems; Analyzing bigdata with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; Four ways that NoSQL systems handle big data problems		
4	MapReduce	08	L1, L2, L3, L4
	4.1 MapReduce and The New Software Stack: Distributed File Systems, Physical Organization of Compute Nodes, Large Scale File-System Organization		
	4.2 MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures		
	4.3 Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations by MapReduce, Matrix Operations, Matrix Multiplication by MapReduce.		
5	Techniques in Big Data Analytics	10	L1, L2, L3, L4

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC)

(Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

	 5.1 Finding Similar Item: Nearest Neighbor Search, Similarity of Documents 5.2 Mining Data Streams: Data Stream Management Systems, Data Stream Model, Examples of Data Stream Applications: Sensor Networks, Network Traffic Analysis 5.3 Link Analysis: PageRank Definition, Structure of the web, dead ends, Using Page rank in a search engine, Efficient computation of Page Rank: Page Rank Implementation Using MapReduce 5.4 Frequent Itemset Mining : Market-Basket Model, Apriori Algorithm, Algorithm of Park-Chen-Yu 		
6	Big Data Analytics Applications	07	L1, L2, L3, L4
	 6.1 Recommendation Systems: Introduction, A Model for Recommendation Systems, Collaborative-Filtering System: NearestNeighbor Technique, Example. 6.2 Mining Social-Network Graphs: Social Networks as Graphs, Types of Social-Network. Clustering of Social Graphs: Applying Standard Clustering Techniques, Counting triangles using MapReduce. 		

Books & References:

SN	Title	Authors	Publisher	Edition	Year
1	Big Data Analytics	Radha Shankarmani and M Vijayalakshmi	Wiley	Second	2015
2	Hadoop in Practice	Alex Holmes	Manning Press	Second	2017
3	Making Sense of NoSQL– A guide for managers and the rest of us	Dan McCreary and Ann Kelly	Manning Press	Third	2013
4	Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics	Bill Franks	Wiley	Third	2015

Online References:

S.	Website Name	URL	Modules
No.			Covered
1	https://nptel.ac.i n/	https://nptel.ac.in/courses/106104189/	M1, M2, M3
2	https://www.co ursera.org	https://www.coursera.org/courses?query=introduction%20t o%20big%20data%20analytics	M6

Suggested List of Practical / Experiment:

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019)

Under TCET-Autonomy Scheme - 2019

C) tcet tcet Estd. in 2001

Practical Number	Type of Experiment	Practical/ Experiment Topic	Hrs.	RBT Levels
1		Study of Hadoop ecosystem	2	L1, L2, L3
2	Basic Experiments	gramming exercises on Hadoop	2	L1, L2, L3
3	Design Experiments	gramming exercises in No SQL	2	L1, L2, L3
4		Implementing simple algorithms in Map- Reduce - Matrix multiplication, Aggregates	2	L1, L2, L3
5		Design and implementation of any case study/ applications based on standard Datasets available on the web	2	L1, L2, L3
6		T20 understand the overall programming architecture using Map Reduce API	2	L1, L2
7		Sto2re the basic information about students such as roll no, name, date of birth , and address of student using various collection types such as List, Set and Map	4	L1, L2, L3,L4
8		Basic CRUD operations in MongoDB	4	L1, L2, L3,L4, L5
9		Retrieve various types of documents from students collection	4	L1, L2, L3,L4, L5
10		To find documents from Students collection		L1, L2, L3,L4, L5
11, 12,13,14,15	Mini/Minor Projects/ Seminar/ Case Studies	 Develop Map Reduce Work Application Mid Semester Examination Creating the HDFS tables and loading them in Hive and learn joining of tables in Hive Design and implementation of any case study/ applications based on standard Datasets available on the web Fraud Detection Design and implementation of any case study/ applications based on standard Datasets available on the web Traud Detection Design and implementation of any case study/ applications based on standard Datasets available on the web Text Mining etc. using modern tools 	8	L1, L2, L3,L4, L5
		Total Hours	32	

B.E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

BE (Electronics & Telecommunication Engineering)						B. E. (SEM: VII)				
Course Name: Professional Elective IV (Machine Learning)					Course Code: PEC-ETC7021					
Teaching Scheme (Program Specific) Examin					nation Scheme (Formative/ Summative)					
Mod	les of Teach	ing / Learni	ing / Weigh	tage		Modes	s of Continuous Assessment / Evaluation			
Hours Per Week (100)					ory 10)	Practical/Oral (25)	Term Work (25)	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	PR/OR	TW	150	
3	-	2@	5	4	25	75	25	25		
3 - 2@ 3 4 23 75 25 25 @-Professional Elective Courses Lab will be conducted in the form Capstone Project IA: In Semester Assessment- Paper Duration – 1.5 Hours ESE: End Semester Evaluation- Paper Duration – 3 Hours The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance/Learning Attitude (20%)										
Prerequi	site: Basic F	robability ar	d Statistics.	Algebra an	nd Calcu	lus, Lin	ear Algebra			

Course Objective: This course will introduce the field of Machine Learning, in particular focusing on the core concepts of supervised and unsupervised learning. In supervised learning we will discuss algorithms which are trained on input data labelled with a desired output, for instance an image of a face and the name of the person whose face it is and learn a function mapping from the input to the output. Unsupervised learning aims to discover latent structure in an input signal where no output labels are available, an example of which is grouping web-pages based on the topics they discuss. The course will also introduce the applications of machine learning to a range of real-world problems.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	Understand and explain the fundamental issues and challenges of machine learning: data, model selection, model complexity, etc.	L1, L2
2	Understand and explain the strengths and weaknesses of many popular machine learning approaches.	L1, L2
3	Identify machine learning techniques suitable for a given problem	L1, L2, L3, L5
4	Apply Dimensionality Reduction Techniques	L1, L2, L3
5	Solve the problems using various machine learning techniques	L1, L2, L3, L4, L5
6	Describe and appreciate the application of Machine Learning to different real-world problems	L1, L2, L3, L4, L5

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019)

Under TCET-Autonomy Scheme - 2019

Detailed Syllabus:

Module No	Topics	Hrs	Cognitive levels of attainment as per Bloom's Taxonomy
	Introduction		
	What is Machine Learning, what is Artificial Intelligence, Machine Learning vs AI,		
1	Machine Learning vs Deep Learning, Types of Machine Learning, General Steps or	06	L1, L2
	Process of Machine Learning, Data cleaning, data transform/fitting, Over fitting,		
	Under fitting, Variance, Bias, Parametric Vs Non Parametric models-Linear models.		
	Supervised Learning: Classification		
2	Random Forest, Decision Trees, Logistic Regression, Support Vector Machines, KNN,	10	L1, L2, L3, L4
	Naïve Bayes, Usage, Bagging, Boosting		
2	Supervised Learning: Regression	06	
3	Linear Regression, Polynomial Regression, Principle Component Analysis, Usage	00	L1, L2, L3, L4
	Unsupervised Learning		
4	Clustering: K-Means, K Nearest Neighbors, Agglomerative Clustering, Divisive	06	L1, L2, L3, L4
	Clustering.		
	Artificial Neural Networks		
5	Representation, Back Propagation Algorithm, CNN, RNN, Transfer Learning,	10	L1, L2, L3, L4
	Ensemble Learning		
6	Machine Learning Applications across Industries	07	L1, L2, L3, L4,
0	Healthcare, Retail, Financial Services, Manufacturing, Hospitality	07	L5
	Total Hours	45	

Books and References:

Sr. No.	Title	Authors	Publisher	Edition	Year
1	Machine Learning	Tom M. Mitchell	McGraw Hill	First Edition	1997
2	Pattern Recognition and Machine Learning	Christopher M. Bishop	Springer-Verlag New York	First Edition	2006
3	Introduction to Machine Learning	Ethem ALPAYDIN	MIT Press	Second Edition	2010

Online References:

Sr. No.	Website Name	URL	Modules Covered
1	NPTEL	https://nptel.ac.in/courses/106/106/106106139/	M1-M3, M5
2	Coursera	https://www.coursera.org/learn/machine-learning	M1-M5

B. E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

B.E. (Electronics & Telecommunication Engineering)					B.E. SEM: VII				
Course Name: Professional Elective IV (Robotics)					cs)	Course Code: ETC7022			
Teach	ing Scheme	(Program Sp	oecific)				Examination schen	ne	
Modes o	f Teaching /	Learning / V	Veightage		Mode	es of Co	ntinuous Assessme	nt / Evaluation	
Hours Per Week- Theory (100)						Practical/Ora l (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	OR	TW	150
3	-	2@	5	4	25	75	25	25	1
 @-Professional Elective Courses Lab will be conducted in the form Capstone Project IA: Internal Assessment - Paper Duration – 1Hour ESE: - End Semester Examination Paper Duration - 3 Hours The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance (20%) 									
Prerequisit	Prerequisite: Instrumentation & Control								

<u>Course Objective</u>: The course intends to deliver the systematic study of basic knowledge of robotics, kinematics & dynamics of robots, path and trajectory planning and robot vision.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

Sr.No.	Course Outcomes	Cognitive Level s as per Blooms Taxonomy
1	Understand the basics of robotics and Describe Forward & Inverse Kinematics of Robots	L1, L2
2	Describe trajectory planning and path planning for robots	L2, L3
3	Understand robot vision and task planning	L2, L3
4	Work in interdisciplinary projects	L4, L5, L6

Detailed Syllabus:

Module	Topics	Hrs	Cognitive Level
No.			as per Blooms Taxonomv

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

1	Fundamentals of Robotics		
	Robot Classification, Robot Components, Degrees of freedom, Joints,	0.4	L1, L2
	Coordinates, Coordinate frames, workspace, applications	04	
2	Forward & Inverse Kinematics of Robots		
	Homogeneous transformation matrices, Inverse transformation matrices,		
	Forward and inverse kinematic equations – position and orientation.	10	L2, L3
	Denavit- Hatenberg representation of forward kinematics, Forward and inverse		
	kinematic solutions of three and four axis robot		
3	Velocity Kinematics & Dynamics		
	Differential motions and velocities : Differential relationship, Jacobian,	04	L2, L3
	Differential motion of a frame and robot, Inverse Jacobian, Singularities		
4	Trajectory planning	10	L2, L3
	Dynamic Analysis of Forces: Lagrangian mechanics, Newton Euler formulation,		
	Dynamic equations of two axis robot.		
	Basics of Trajectory planning, Joint-space trajectory planning, Cartesian- space		
	trajectories		
	Robot Vision	09	
5	Image representation, Template matching, Polyhedral objects, Shape analysis,		L2, L3
	Segmentation, Iterative processing, Perspective transform, Camera Calibration		
6	Task Planning	08	L4, L5, L6
	programming, Uncertainty, Configuration Space, Gross motion Planning; Grasp		
	ine-motion Planning, Simulation of Planer motion, Source and goal scenes, Task		
	ulation		
	Tot	tal Hours	45

Books and References:

Sr. No.	Title	Authors	Publisher	Edition	Year
1	Introduction to Robotics –	Saeed Benjamin Niku,	Wiley India Pvt.	2 nd edition	2011
	Analysis, Control,		Ltd		
	Applications				
2	Introduction to Robotics –	John J. Craig	Pearson	3rd edition	2009
	Mechanics & Control		Education, India		
3	Learning ROS for	Aaron Martinez & Enrique	Shroff Publishers	1 st edition	2013
	Robotics Programming	Fernandez			
4	Fundamentals of Robotics	Robert Shilling	Prentice Hall of	2 nd edition	2010
	- Analysis and control		India		

B. E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

B.E. (Electronics & Telecommunication Engineering)					B.E. (SEM: VII)				
Course Name: Professional Elective IV (RF MEMS)					Course Code: ETC7023				
Teach	ing Scheme	(Program Sp	pecific)]	Examination schen	ne	
Modes of	f Teaching /	Learning / V	Veightage		Mode	es of Co	ntinuous Assessme	nt / Evaluation	
Hours Per Week- Theory (100)					Practical/Ora l (25)	Term Work (25)	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	OR	TW	150
3	-	2@	5	4	25	75	25	25	1
 @-Professional Elective Courses Lab will be conducted in the form Capstone Project Internal Assessment - Paper Duration – 1Hour ESE: - End Semester Examination Paper Duration - 3 Hours 									
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance (20%)									
Prerequisite	e: Electromag	gnetic Engine	ering	× *	·				

Course Objective: The course intends to give an understanding of MEMS Switches. The course also aims to make the students understand and apply design technique to Inductors, Capacitors, RF Filters and Phase Shifters using MEMS technology. Lastly, the course will also deliver the understanding of micromachine technique to microstrip antennas performance enhancement.

<u>Course Outcomes</u>: Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy		
1	Characterize RF MEMS Switches	L1, L2		
2	Design and analyze MEMS Inductors.	L1, L2, L3, L4, L5, L6		
3	Design and analyze MEMS Capacitors	L1, L2, L3, L4, L5		
4	Characterize and design Micromachined RF Filters	L1, L2, L3, L4		
5.	Characterize and design MEMS Phase Shifters	L1, L2, L3, L4		
6.	Demonstrate skills of Micromachining to improve antenna performance	L1, L2, L3		

Detailed Syllabus:

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

Module No.	Topics	Hrs.	Cognitive levels of attainment as per Bloom's Taxonomy
1	RF MEMS Switches Introduction to MEMS, Switch parameters, Mechanical switches and Electronic switches, Switches for RF and microwave applications, Actuation mechanisms for MEMS devices.	08	L1, L2
2	MEMS Inductors Self-inductance and mutual inductance, Micromachined inductor, Meander inductors, Spiral inductors, Solenoid inductors, Effect of inductor layout, Modeling and design issues of planar inductor.	09	L1, L2, L3, L4, L5, L6
3	MEMS Capacitors MEMS gap-tuning capacitors:Electrostatic tuning, Electro-thermal tuning, Piezoelectric-actuator tuning. MEMS area tuning capacitors, Dielectric tunable capacitors.	06	L1, L2, L3, L4, L5
4	Micromachined RF Filters Parameters for characterizing bandpass filters. Modeling of Micromechanical filters: Electrostatic comb drive, Micromechanical filters using comb drives, Micromechanical filters using electrostatic coupled beam structures Bulk acoustic wave filters, Micromachined filters for millimeter wave frequencies	08	L1, L2, L3, L4
5	MEMS Phase Shifters Types of phase shifters and their limitations: Ferrite phase shifters, Semiconductor phase shifters, Ferroelectric thin-film phase shifters, Limitations of phase shifters. MEMS phase shifters: Switched delay line phase shifters, Distributed MEMS phase shifters, Polymer-based phase shifters.	08	L1, L2, L3, L4
6	Micromachined Antennas Microstrip antennas, Basic characteristics of microstrip antenna Design parameters of microstrip antennae, Micromachining to improve antenna performance, Reconfigurable antennas.	06	L1, L2, L3
	Total	45	

Books & References:

Sr. No.	Title	Authors	Publisher	Edition	Year
------------	-------	---------	-----------	---------	------

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC

(Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

1	RF MEMS and Their Applications	Vijay K. Varadan K.J. Vinoy, K.A. Jose	Wiely	First Edition	2003
2	RF MEMS Circuit Design for Wireless Communications	Héctor J. De Los Santos	Artech House	First Edition	2002
3	RF MEMS Theory, Design, and Technology	Gabriel M. Rebeiz	Wiley- Interscience	First Edition	2003
4	Micro Electro Mechanical System Design	James J. Allen	Taylor & Francis	First Edition	2005
5	RF Circuit Design	John E. Blyler	Newnes	Second Edition	2007
6	Microwave Engineering	David Pozar	McGraw Hill Education	Fourth Edition	2014

Online References:

Sr. No.	Website Name	URL	Modules Covered
1	www.besserassociates.com	https://www.besserassociates.com/Courses/Course- Description/CTID/273	M1-M6

Suggested List of Practical / Experiment:

Professional Elective Courses- RF MEMS Lab will be conducted in the form Capstone Project. Students are required to complete one project in group of 3 students form following list of projects.

- 1. Design of RF MEMS Switch
- 2. Design of MEMS Inductor for RF application
- 3. Design of MEMS Capacitor for RF application
- 4. Design of Micromachined RF Filters
- 5. Design of Ferrite phase shifters
- 6. Design of Semiconductor phase shifters
- 7. Design of Distributed MEMS phase shifters
- 8. Design of Micromachined frequency reconfigurable Microstrip antenna
- 9. Design of Micromachined Microstrip antenna for bandwidth enhancement.
- 10. Design of Micromachined Microstrip antenna for lobe switching.
- 11. Design of Micromachined smart antenna for wireless communication
- 12. Design of Micromachined Microstrip antenna for

B. E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

B.E. (F	lectronics a	and Telecom	munication	1 Engineeri	ng)		B.E. (SEM: VII)			
Course Name: Professional Elective IV (VLSI and CMOS I				IOS Des	OS Design) Course Code: PEC-ETC7024					
Teaching Scheme (Program Specific)						Examination s	cheme			
Mod	es of Teachi	ing / Learni	ng / Weight	age	Ν	Aodes of	f Continuous Asses	ssment / Evaluat	ion	
Hours Per Week-Theory (100)						Practical/Oral	Term Work	Total		
						(25)	(25)			
Theory	Tutorial	Practical	Contact	Credits	IA	ESE	PR&OR	TW		
-			Hours						150	
4	-	2@	6	5	20	80	25	25		
	<u>@</u> -	Professional	Elective Co	ourses Lab v	vill be co	onducted	l in the form of Cap	stone Project		
]	[A: Interna	l Assessme	nt - Pap	er Dura	tion – 1 Hour			
		ESE:	End Seme	ster Exami	nation -	Paper I	Duration - 3 Hours			
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%) Timely completion of										
practical (40%) and Attendance (20%)										
Prerequi	site: Digital	Circuit Desi	gn, Electron	ic Devices a	and Circ	uits-I &	II, Microelectronic	s and Mixed signa	al design	

Course Objective: To impart the knowledge about VLSI design trends, methodologies and allied systems used in digital design.

Course Outcomes: Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Cognitive Levels as per Blooms Taxonomy
1	Demonstrate a clear understanding of choice of technology, Explain the process of fabrication and list down the MLD rules and draw the MLD	L1,L2
2	List different parameters, Concept of static and dynamic analysis, compare different types of Inverters.	L1,L2,L3,L4
3	Explain different design styles used in digital design like PTL, Transmission gates etc. Implement concept of sizing. Implementation of various circuits using different design styles.	L1,L2,L3
4	Explain different memory structures; explain working of memory units, its modes of operation and its peripheral circuitry.	L1,L2,L3
5	Explain different types of adder circuits, Compare it's performance. Explain multiplier circuits and allied circuitry.	L1,L2
6	Explain clocking phenomenon, clock generation and distribution. Understand importance of Low power design and implement protection circuitry, Explain Interconnect model and scaling.	L1,L2,L3

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

Module No.	Topics	Hrs	Cognitive Levels as per Blooms Taxonomy
1	CMOS		L1,L2
	Fabrication Process: N-MOS and CMOS-nWell. Mask layout Diagram: Rules of mask layout diagram and Mask lay out diagram of CMOS	4	
2	MOSFET Inverters	6	
	 Types of MOS inverters: Active and passive load and their comparison. Circuit Analysis of MOS Inverters: Static Analysis resistive and CMOS inverter: Calculation of all critical voltages and noise margins. Design of symmetric CMOS inverter and its mask layout diagram Dynamic Analysis of CMOS inverter: Calculation of rise time, fall time and propagation delay. Logic Circuit Design: Analysis and design of 2-I/P NAND, NOR and complex Boolean function using equivalent CMOS inverter for simultaneous switching. 		L1, L2,L3,L4
3	MOS Circuit Design Styles	10	L1, L2, L3
	Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo NMOS, C2MOS, Dynamic, Domino,NORA and Zipper. Circuit Realization: Basic gates,SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX using above design styles.	10	
4	Semiconductor Memories	9	L1, L2, L3
	 SRAM: 6T SRAM, operation, design strategy, leakage currents, read/write circuits, sense amplifier. DRAM: 1T_DRAM, operation modes, leakage currents, refresh operation, physical design. ROM Array: NAND and NOR PROM, Nonvolatile read/write memories classification and programming techniques. 		
5	Data Path Design	6	
	Adder: CLA adder, MODL, Manchester carries chain and high-speed adders like carry skip, carry select and carry save. Multipliers and shifter: Array multiplier and barrel shifter		L1, L2
6	VLSI Clocking and System Design	10	
	 Clocking: CMOS clocking styles, Clock generation, stabilization and distribution. Low Power CMOS Circuits: Various components of power dissipation in CMOS, Limits on low power design, low power design through voltage scaling I/O pads and Power Distribution: ESD protection, input circuits, output circuits, simultaneous switching noise, power distribution scheme Interconnect: Interconnect delay model, interconnect scaling and crosstalk. 		L1, L2, L3
	Total Hrs	45 hrs	

Books and References:

ENGINEERS

S. No.	Title	Authors	Publisher	Edition	Year
1	VLSI Design	Debaprasad Das	Oxford	1 st Edition	2011
2	Low-Power CMOS VLSI Circuit Design	Kaushik Roy and Sharat C. Prasad	Wiley	Student edition	2009
3	CMOS VLSI Design	Neil H. E. Weste, David Harris and	Pearson	3 rd edition	2009
		Ayan Banerjee	Education		

4	CMOS Digital Integrated	Sung-Mo Kang and Yusuf Leblebici	Tata McGraw	3 rd edition	2011
	Circuits Analysis and		Hill, 3rd		
	Design		Edition.		

Online References:

S. No.	Website Name	URL	Modules Covered
1	www.udemy.com	https://www.udemy.com/course/svac_c1_ic_desig	M1,M2,M3
		n_manufacturing process/	
2	www.online.stanford.edu	https://online.stanford.edu/courses/ee271-	M1,M2,M3,M6
		introduction-vlsi-systems	
3	www.classcentral.com	https://www.classcentral.com/course/swayam-	M1,M2,M3,M4,M5.
		cmos-digital-vlsi-design-12964	M6
4	www.mooc-list.com	https://www.mooc-list.com/course/vlsi-cad-logic-	M3,M4,M5,M6+adv
		layout-coursera/	ance topics

B.E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

	BE (Electronics & Telecommunication Engineering)					B. E. (SEM: VII)			
Cours	se Name: Pr	ofessional El	ective IV (V	Vireless Ser	nsor Net	sor Networks) Course Code: PEC-ETC7025			
Teaching Scheme (Program Specific)					Examinati	ion Scheme (Forma	tive/ Summative	e)	
Modes of Teaching / Learning / Weightage					Modes of	Continuous Assessn	nent / Evaluatio	n	
Hours Per Week				TI (heory 100)	Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	25	25	150
3	-	2@	5	4	25	75			
	@-P	rofessional E	lective Cou	rses Lab wi	ll be con	ducted in th	he form Capstone Pro	oject	
		IA:	In Semeste	er Assessmo	ent- Pap	per Duratio	on – 1.5 Hours		
		ESH	E: End Sem	ester Evalu	ation- l	Paper Dura	ation - 3 Hours		
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance/Learning Attitude (20%)									
Prerequi	site: Compu	ter Networks	, Mobile Co	mmunicatio	on Syste	ms			

Course Objective: Course aims to make students understand the concepts of wireless sensor and adhoc networks, the major challenges and designing issues, various MAC and routing protocols in wireless sensor and adhoc networks and heterogeneous network architecture including MANET, WLAN, Cellular Networks.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	Understand and describe the concept of wireless sensor networks, Adhoc networks, and their applications.	L1, L2
2	Describe and evaluate the performance of various routing protocols in wireless sensor and adhoc networks.	L1, L2, L3
3	Explain the broadcasting and Geocasting routing techniques in MANATES	L1, L2, L3, L4, L5
4	Describe and examine the performance of Multicasting protocols.	L1, L2, L3
5	Understand and describe the various design issues and challenges in Wireless Sensor Networks.	L1, L2, L3, L4
6	Understand and explain the heterogeneous network architecture comprised of MANETs, WLANs and Cellular Networks.	L1, L2, L3, L4, L5

Detailed Syllabus:

Module	Topics	Hrs	Cognitive levels of attainment as per Bloom's
110			Taxonomy
1	Introduction to MANET and Wireless Sensor Networks Introduction to WSN and MANET. WPAN: Bluetooth, ZigBee, UWB WLAN:	08	1112
	Architecture, PHY and MAC layer, 802.11a, 802.11b, 802.11n. Application of sensor Network, Sensing and Communication Range, Energy and Clustering of sensors	00	L1, L2
	Routing in Adhoc Networks		
2	Topologies - Based Routing Protocols: DSDV, WRP, OLSR, DSR, AODV, TORA, ZRP. Position-Based Routing: Location Services: DREAM, Quorum based, Grid based Forwarding Strategies: Greedy packet forwarding, Expected zone routing, Relative Distance Micro-Discovery Ad Hoc Routing. Other Routing Protocols: Signal Stability Routing Protocol, Power Aware Routing, Associativity-Based Routing, QoS Routing.	10	L1, L2, L3
	Broadcasting and Geo-casting in MANET		
3	Introduction, The Broadcast Storm, Broadcasting: Ad Hoc Broadcast Protocol, Lightweight and Efficient Network-Wide Broadcast Geo-casting: Location-Based Multicast, Voronoi Diagram Based Geo=casting, Flooding-Based GeoGRID, Route Creation Oriented	08	L1, L2, L3, L4, L5
	Multi-casting in MANET		
4	Tree-Based Approaches: Multicast Ad Hoc On-Demand Distance Vector Protocol, Location Guided Tree Construction Algorithm for Small Group Multicast, Multicast Zone Routing. Mesh-Based Approaches: On-Demand Multicast Routing Protocol, Stateless Approaches: Differential Destination Multicast, Hybrid Approaches: Ad Hoc Multicast Routing Protocol	08	L1, L2, L3
	Design Issues & Challenges in Wireless Sensor Networks		
5	Introduction, Design Issues & Challenges: Energy, Self Management, Hardware, Operating System, Middleware, QoS,; Medium Access Schemes, Network and transport layer. Fundamentals of Network Security	06	L1, L2, L3, L4
	Integrating MANETs, WLANs and Cellular Networks		
6	Introduction, Ingredients of a Heterogeneous Architecture, Protocol Stack, Comparison of the Integrated Architectures.	05	L1, L2, L3, L4, L5
	Total Hours	45	

Books and References:

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

1	Adhoc & Sensor Networks Theory and Applications	Cordeiro, Agrawal	Cambridge University Press India Pvt. Ltd	Second Edition	2010
2	Adhoc Wireless Networks Architecture and Protocols	C.Siva Ram Murthy and B.S.Manoj	Pearson	Second Edition	2016
3	Adhoc & Sensor Networks	Houda Labiod	Wiley	First Edition	2010
4	Wireless Communication and Networking	Vijay Garg	Elsevier Inc.	First Edition	2004
5	Embedded Systems: An Integrated Approach	Lyla Das	Pearson Publication	First Edition	2013
6	Wireless and Mobile Networks, Concepts and Protocols	Manvi, Kakkasageri	Wiley	Second Edition	2014

Online References:

Sr. No.	Website Name	URL	Modules Covered
1	NPTEL	https://nptel.ac.in/courses/106/105/106105160/	M1, M2, M4
2	NPTEL	https://ict.iitk.ac.in/courses/wireless-ad-hoc-and-sensor- networks/	M1. M2
4	Swayam	https://onlinecourses.swayam2.ac.in/ugc19_cs10/preview_	M4, M5, M6

B. E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

BE (Electronics & Telecommunication Engineering)						B.E. (SEM : VII)			
Course Name: Finance Management						Course Code : H	ISMC-ETC701		
Теа	ching Schen	ne (Program	Specific)		Exa	minatior	Scheme (Formativ	ve/ Summative)	
Modes	of Teaching	g / Learning	/ Weightage	e	Мос	les of Co	ontinuous Assessme	nt / Evaluation	
	Hour	s Per Week			Theo	ory (100)	Practical/Oral (25)	Term Work (25)	Total
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	PR/OR	TW	100
3	-	-	3	3	25	75	-		100
		IA	: In-Semest	er Assessm	ent - Paj	per Dura	tion – 1 Hour		
	ESE: End Semester Examination - Paper Duration - 3 Hours								
The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance / Learning Attitude (20%)									
Prerequis	site: Basic M	lathematics							

<u>Course Objectives:</u> The course intends to give an overview of Indian financial system, instruments and market along with basic concepts of value of money, returns and risks, corporate finance, working capital and its management. It also exhibit knowledge about sources of finance, capital structure, dividend policy.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy Levels
1	Understand Indian Financial System with respect to financial Instruments, financial markets and institutions	L1,L2
2	Understand the concepts of Returns and risks along with time value of money	L1, L2,L3
3	Understand Corporate Finance and perform financial ratio analysis	L1, L2,L3
4	Importance of Capital Budgeting	L1,L2,L3,L4
5	Identify Sources of Finance and capital structure	L1,L2,L3,L4
6	Analyze the Dividend Policy concepts for financial decisions	L1,L2,L3,L4

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

Detailed Syllabus:

Module No.	e Topics		Cognitive levels of
			as per Bloom's
1	Overview of Indian Financial	08	L 1 L 2
1	System	08	L1,L2
	Characteristics, Components and Functions of Financial System. Financial Instruments: Meaning, Characteristics and Classification of Basic Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of		
	Financial Markets: Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market Financial Institutions: Meaning, Characteristics and Classification of		
	Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges		
2	Concepts of Returns and Risks	08	L1, L2,L3
	Measurement of Historical Returns and Expected Returns of a Single Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Risk of a Single Security and a Two-security Portfolio. Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity		
	Due; Continuous Compounding and Continuous Discounting		
3	Overview of Corporate Finance	08	L1, L2,L3
	Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision. Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.		
4	Capital Budgeting	10	L1,L2,L3,
	Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR) Working Capital Management: Concepts of Magning Working Capital		L4
	Working Capital Management: Concepts of Meaning Working Capital, Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities		
5	Sources of Finance	07	L1,L2,L3,
	Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance—Trade Credit, Bank Finance, Commercial Paper; Project Finance. Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of Capital Structure Theories and Approaches— Net Income Approach, Net Operating Income Approach; Traditional Approach, and Modigliani-Miller		L4
	Approach. Relation between Capital Structure and Corporate Value; Concept		

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

	of Optimal Capital Structure		
6	Dividend Policy	04	L1, L2, L3,L4
	Meaning and Importance of Dividend Policy; Factors Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches—Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach		

Books and References:

S. No.	Title	Authors	Publisher	Edition	Year
1	Fundamentals of Financial Management	Eugene F. Brigham and Joel F. Houston	Cengage Publications, New Delhi	Thirteenth Edition	2015
2	Analysis for Financial Management	Robert C. Higgins	McGraw Hill Education	Tenth Edition	2013
3	Indian Financial System	M. Y. Khan	McGraw Hill Education, New Delhi	Ninth Edition	2015
4	Financial Management	I. M. Pandey	S. Chand (G/L) & Company Limited, New Delhi	Eleventh Edition	2015

Online References:

S. No.	Website Name	Website Name URL	
1	www.splessons.com	https://www.splessons.com/lesson/indian-financial-system- overview/	M1,M3
2	finance.zacks.com	https://finance.zacks.com/concepts-return-investment-risk- 3049.html	M2
3	www.edupristine.com	https://www.edupristine.com/blog/capital-budgeting	M4
4	efinancemanagement.co m	https://efinancemanagement.com/sources-of-finance	M5
5	www.businessmanageme ntideas.com	https://www.businessmanagementideas.com/financial- management/dividends/meaning-and-types-of-dividend- policy-financial-management/3968	M6

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

BE (Electronics & Telecommunication Engineering)					B.E. (S	SEM: VII)				
Course Name : Project-I					Course Code	: PROJ-ETC70	1			
Т	eaching Sch	neme (Progra	am Specific)		E	xaminati	on Scheme (Formati	ve / Summative)	
Mod	les of Teach	ing / Learni	ng / Weighta	ge	M	odes of	Continuous Assessm	sment/ Evaluation		
	Hours Per Week The			The	ory	Practical/Oral/ Presentation	Term Work	Total		
Theory	Tutorial	Practical	Contact Hours	Credit s	IA	ESE	PR/OR	TW	50	
-	-	6	6	3	-	-	25	25	50	
The w	The weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely completion of practical (40%) and Attendance / Learning Attitude (20%)									
Prerequi	site: All cou	rses in the sy	llabus							

Course Objective:

- 1. To do extensive literature survey and identify gap.
- 2. Integrate information from multiple sources.
- 3. Identify, analyze, and solve problems creatively through sustained critical investigation.
- 4. Apply fundamental and disciplinary concepts and methods in ways appropriate to their principal areas of study.
- 5. Demonstrate an awareness and application of appropriate personal, societal, and professional ethical standards.
- 6. Use effective oral and written communication and demonstrate an ability to work in teams.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
1	Identify the relevant literature and interpret it correctly to understand the gap covered by the proposed method.	L1, L3, L4, L5
2	Integrate collected information from various sources for the solution of identified problem.	L1, L3, L4, L5
3	Investigate the identified problem and categorize it to find appropriate solution identified from collected information.	L1, L3, L4, L5
4	Apply learned concepts from the various areas learned in academics to solve the identified problem.	L1, L3, L4, L5
5	Understand the importance of ethics at personal, societal and professional level.	L1,L3
6	Communicate with outer world from technical and non-technical areas and gain managerial skill while working in a team.	L2, L3, L5

Project-I:

Guidelines for Assessment of Project-I:

Project-I should be assessed based on following points

- Quality of problem selected
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization
- Clarity of objective and scope
- Breadth and depth of literature survey
- Project I should be assessed through a presentation by the student project group to a panel of Internal and external examiners appointed by the Head of the Department/Institute of respective Programme.

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

B. E. Semester –VII

Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS- H 2019) Proposed Syllabus under Autonomy Scheme

BE (Electronics and Telecommunication Engineering)						B. E. (SEM : VII)			
Course Name: Professional Skills VII							Course Code :	HME- ETCPS	701
Teach	ing Scheme	(Program S	Specific)		E	xamina	tion Scheme (For	native/ Summ	ative)
Modes o	f Teaching /	Learning /	Weightage		Μ	lodes of	Continuous Asse	ssment / Evalu	ation
Hours Per Week Theory (100)				neory 100)	Practical/Oral (25)	Term Work (25)	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	PR/ OR	TW	75
1	-	2	3	2	-	-	25	50	
			Audit (Course Eval	uated l	by Ment	ors		
Mid Semester Assessment for Term Work will be on Continuous Basis									
Prerequisit	e: Basics of	Computer							

Course Objective:

The objective of the course is to give the basics understanding of Latex tool which is used for Documentation. The course intends to develop necessary skills for becoming skilled personnel in Documentation.

<u>Course Outcomes:</u> Upon completion of the course, students will be able to:

S.N.	Course Outcomes	Cognitive level attainment as per revised Bloom's Taxonomy
1	Able to install Latex and understand basic Latex layout.	L1, L2
2	Able to format Word, Line and paragraph in Latex.	L1, L2, L3, L4
3	Design pages according to the requirement	L1, L2, L3, L4
4	Creating List & Adding Figures, Tables in Latex Document	L1, L2, L3, L4, L5
5	Able to insert mathematical formula or function.	L1, L2, L3, L4
6	Able to apply Cross-Reference in the Latex Document	L1, L2, L3, L4

TCET DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

Detailed Syllabus:

Module	Topics	Hrs	RBT Levels
No.		•	
1	Introduction	2	L1, L2
	Introduction to Latex Installation of Latex First Latex Document Basic layout		
	Title pages		
2	Formatting Words, Lines, and Paragraphs		L1. L2. L3. L4
	Exploring the document structure, Understanding LaTeX commands, breaks and	3	
	empty lines, special characters in text, switching fonts, font family, grouping by		
	braces, font sizes, adding intelligent spacing, creating a narrow text column, line		
	breaks		
3	Designing Pages	3	L1, L2, L3, L4
	Adjust the margins, Change the line spacing, Section the document, create a table of		
	contents, Design headers and footers, Control page breaking, set footnotes and modify		
	their appearance		
4	Creating List & Adding Figures, Tables		L1, L2, L3,
		3	L4, L5
	Bulleted lists, Numbered lists, Definition lists, lining up text and data in columns,		
	typesetting complex tables, including pictures in our documents, adding captions to		
	pictures and tables, Controlling the placement of figures and tables		
5	Math Functions		L1, L2, L3, L4
		2	
	Writing basic formulas, embedding formulas within text and text within formulas,		
	Cantering and numbering equations, aligning multi-line equations, typesetting math		
	symbols such as roots, operators, Greek letters, and arrows, building fractions,		
	stacking expressions, Building matrices		
6	Cross- Referencing & Bibliography		L1, L2, L3,
	Refer to sections, footnotes, list items, tables, and more, refer to page numbers and	2	L4, L5
	ranges, Make LaTeX refer verbosely to adjacent pages, automate naming of		
	references, create references to external documents, Creating a bib file		
	Total Hours	15	

Books & References:

SN	Title	Authors	Publisher	Edition	Year
1		Unmesh Gundecha	packt	first	2011
	LaTeX Beginner's Guide				
2	LaTeX Cookbook	Stefan Kottwitz	packt	second	2015
3	LaTeX A Document	Leslie Lamport	Addison-Wesley Publishing	second	1985
	Preparation System		Company		

Online References:

S. No.	Website Name	URL	Modules
			Covered
1	https://www.edx.org/	https://www.edx.org/course/latex-for-students-engineers-	M1, M2, M3, M4,
		and-scientists-2	M5, M6
2	https://www.lynda.com/	https://www.lynda.com/LaTeX-kurs-tutorial/3141-0.html	M3,M4

List of Practical/ Experiments:

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING (E&TC) (Accredited by NBA for 3 years, 3rd Cycle Accreditation w.e.f. 1st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET-Autonomy Scheme - 2019

Practical Number	Type of Experiment	Practical/ Experiment Topic		Cognitive levels of attainment as per Bloom's Taxonomy
1		Installation of Latex	2	L1
2	Basic Experiments	Creating a document in Latex	2	L1, L2
3		Inserting sections, subsections and paragraph in the document	2	L1, L2, L3
4	Design Experiments	Implementing Hierarchy of sectioning elements in Latex Document	2	L1, L2, L3
5		Inserting breaks and empty lines, special characters in Latex Document	2	L1, L2, L3
6		Switching fonts, font family, grouping by braces, font sizes in Latex Document	2	
7	Designing Pages, Adjust the margins, Change the line spacing in Latex Document			L1, L2, L3
8	Advanced Experiments	Create a table of contents, Design headers and footers in Latex Document	4	L1, L2, L3
9		Creating List in Latex document	2	L1, L2, L3
10		Adding Figures in Latex Document	2	L1, L2, L3
11 to 15	Mini/Minor Projects/ Seminar/	 Generating a document with Mathematical Functions and Formulas, Writing Report in Latex Writing a Research paper in Latex Writing an Article in Latex Writing Black Book in Latex 		L1, L2, L3
		Total Hours	30	

Estd. in 200

T.E. Semester –VII

BE (ALL BRANCHES)						SEM: VII		
Course Name: Research Based Learning III					Course Code: HSD-ETCRBL701		701	
Те	Teaching Scheme (Program Specific)				Examination Scheme (Formative/ Summative)			
Mode	es of Teach	ing / Learni	ing / Weigł	ntage		Assessmen	nt/Evaluation Scheme	9
Hours Per Week				Presen	tation	Report	Term Work	
Theory	Tutoria l	Practical	Contact Hours	Credit s	A	С	AC	TW
-	-	2	2	1	2:	5	25	50
	Assessment for Term work will be on continuous basis							
Prerequi	Prerequisite: Subject knowledge, Domain knowledge							

<u>Course Objectives:</u> This course is focused to engage the learner in testing & validation, developing business models & exploring possibilities in areas of research and consultancy.

<u>Course Outcomes:</u> Upon completion of the course students will be able to:

S.N.	Course Outcome	Cognitive level attainment as per revised Bloom Taxonomy
1	Upgrade the knowledge of latest technologies, development tools and project development aspects to increase the quality of Projects.	L1, L2, L3
2	Develop skills of competitive business environment.	L1, L2, L3,L4
3	Test their competitive and research skills for participation in consultancy, grant and other competitions.	L1, L2, L3,L4
4	Upgrade research and analytical skills by publishing papers	L1, L2, L3,L4,15

Detailed Syllabus:

Module No.	Topics	Cognitive level attainment as per revised Bloom Taxonomy			
1	1 Industry association: Search of relevant industry/labs/start-ups for project area				
	Identification of Industry for the cause, opportunity, documentation. Testing of mathematical modeled as per standards available and based on the inputs received from Industry/Subject Experts. Submission of report/Presentation and evaluation				
2	Business plan of Prototype/ Business canvas development				
	Preparing Business plan covering the following parameters: I. Key Partners II. Key Activities III. Value Propositions IV. Customer Relationships Customer Segments V. Key Resources VI. Channels VII. Cost Structure VIII. Revenue Streams				

Image: Control of the control of th

	Presentation of Pitch and evaluation	
3	Participation in competition/ research grant group/consultancy.	L1, L2, L3,L4
	I. Participation in project competitions	
	a) Participating at institute /national level /university level /participate in	
	competitions.	
	b) Participation in funded project/consultancy projects	
	II. Research grant: Identifying research grant proposal like University level,	
	industry level etc, Proposal writing and preparing budget.	
	III Evaluation: Evaluation based on level of participation	
	Competition and evaluation	
4	Publish paper at institute /national level conference and Journals	L1, L2, L3,L4,L5
	I. Identification of conference and track on the basis research	
	proposal/theme (Institute/National/International)	
	II. Participating at conference and publishing papers in reputed	
	Journals.	
	Evaluation of research review paper.	

References:

Sr.	Title	Authors	Publisher	Editio	Year
No.				n	
1.	Guide to Competitive Programming: Learning and Improving Algorithms Through Contests	Antti Laaksonen	Springer	Kindle	2018
2.	Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers	Alexander Osterwalder , Yves Pigneur	John Wiley & Sons.	1st	2013
3.	How to Write a Good Research Paper	Peter Haisler	Samfundslitteratur	Kindle	2009

Online References:

Sr.	Website Name	URL	Modules
No.			Covered
1.	https://canvanizer.com	https://canvanizer.com/new/business-model-canvas	M2
2.	https://www.researchga	https://www.researchgate.net/publication/224372998_Idea_Genera	M3
	te.net	tion_Techniques_among_Creative_Professionals	
3.	https://www.startupindi	https://www.startupindia.gov.in/content/sih/en/reources.html	M3
	a.gov.in		
4.	https://www.slideshare.	https://www.slideshare.net/AsirJohnSamuel/lintroduction-to-	M4
	net	research-methodology?next_slideshow=1	

